Winter is a good time to scout
weaknesses in trees near structures, cables

By PAUL HETZLER

We are a clever lot when it comes to helping our kids settle into bed at night. Apparently, the story of how Jack broke his head fetching a pail of water, with Jill falling down the well after him, or the charming bubonic plague ditty “Ring Around the Rosie,” is supposed to calm small children. The veiled threat about abandoning an infant in a tree on a windy night always made my kids hush up. “Rock-a-bye baby, in the treetop; when the wind blows, the cradle will rock. When the bough breaks, the cradle will fall, and down will come baby, cradle and all.”

When the wind blows, any cradle left in a treetop will definitely rock, which sounds like a job for Child Protective Services. Predicting whether a bough is going to break, however, is a job for an arborist. One critical factor that predisposes a tree to wind damage is inherent weakness between major unions, also called forks or crotches. Failure of a large branch-to-trunk or trunk-to-trunk union can be catastrophic, both for the tree as well as for people or structures beneath it. Luckily, most weak unions can be remedied once they have been identified.

Winter is a good time to evaluate mature hardwoods for all kinds of defects, including weak unions. It’s fortunate that unions provide clues as to their strength. The first is the angle of attachment. Branch unions close to ninety degrees tend to be strongest, while narrower ones are weaker.

A tree with two or more trunks of similar size is said to have codominant stems or trunks. Codominant trunks nearly always develop narrow forks which pose some level of risk of splitting. Such a risk increases with the age and size of a tree.

Another indicator of weakness is the presence of seams—look for cracks running down the trunk from the union. A crack on both sides of the trunk implies a far worse situation than does a seam on one side only. Decay is an important clue, but the problem is that it may not always be evident. Conks (shelf fungi) and woodpecker activity indicate serious rot, and it should go without saying that having a little “garden” of brambles and saplings growing in the fork also means extensive decay.

One of the clearest signs of weakness is a pair of ears on a fork. I should probably explain. Trees are self-optimizing; that is, they respond to stress by adding tissue in ways appropriate to the problem. The weaker a union, the more a tree compensates by adding wood, in this case outward from the trunk in a sort of ear or “clam shell” shape.

Finding one of these clues is enough to warrant hiring a professional to assess the tree, and if you identify more than one sign, make it soon. So long as a tree is in generally good condition, even the weakest union can often be stabilized with a cable brace. Because a mature shade tree is irreplaceable in one lifetime, and because it’s more than a slight inconvenience to have a large portion of one “drop in” on you suddenly, cabling is worth the investment.

With all due respect to the capable Do-It-Yourself crowd out there, the wrong cable is worse than no cable. Every component in a cable system must be load-rated, rust-proof, and sized correctly based on the situation. Cabling should only be done by someone familiar with the American National Standards Institute (ANSI) published standards for cable bracing. This is an important point, because not all tree care professionals are up to snuff on ANSI standards, which specify cable diameter, type of eye termination, and the size and type of bolts to use.

It’s critical that the cable is installed at the right height, which is two-thirds to three-quarters of the way from the weak fork to the top of the tree. Of course, the cable is never wrapped around the trunk, since that damages the trunk and weakens or kills the tree above that point. Usually, drop-forged eye bolts are used to secure the cable ends to the tree, but for small trees with no sign of internal decay, J-shaped lag screws are acceptable. The correct sized hole is drilled through the tree (for bolts), or into the tree (for lags). Bolts are much stronger, and are used for larger wood and for any case where decay inside the trunk is suspected. An arborist might also recommend a synthetic cable, rather than steel, to allow for more natural limb or trunk movement.

Lest you fear you will end up with a Frankentree in the yard, don’t worry. A properly installed cable system is inconspicuous, even to the point where you may have to squint through binoculars to find it. For a fraction of the cost of a removal, and a tiny fraction of the cost of emergency removal plus roof repair, most trees can get an extended lease on life through cabling.

While under extreme conditions even a perfect system may break, I have never seen a properly installed cable system fail, and some were more than 50 years old. I have, on the other hand, seen many homemade or substandard systems where cables have snapped, and lags ripped out of trunks.

For information on cabling, contact your local International Society of Arboriculture (ISA) Certified Arborist or other tree care professional. Start with a company or individual belonging to trade organizations like the ISA or Tree Care Industry of America (TCIA). Ask them to show you their copy of the ANSI cabling standards, and insist on proof of insurance directly from their carrier.

Incidentally, there was a reason that cradle was rocking in a tree. In many indigenous cultures such as the Haudenosaune (Iroquois), mothers would secure an infant’s cradle board—the original baby backpack—to a tree while they tended crops or did other work. The child thus got a pleasant, shaded, adult’s-eye view of the world, and was always taken down if the wind became too brisk.

I hope that you and your trees “keep it together” through all sorts of weather for many years to come.

Paul Hetzler is a forester and a horticulture and natural resources educator with Cornell Cooperative Extension of St. Lawrence County.

North Country wild plants: What’s in a name?

By PAUL HETZLER

Encouraging people to make friends with wild plants can be a challenge. Sometimes there are genuine concerns. Nettles, as an example, make an early-spring cooked green par excellence, even though its fresh leaves and stems have stinging hairs that can cause an uncomfortable, if temporary, rash if care is not taken when harvesting it.

Other times, it is a matter of perception. Critical to the survival of monarch butterflies, milkweed is delicious when prepared correctly. Jewelweed, native to wetlands, contains a sap which counteracts poison ivy, and its orange or yellow orchid-like flowers attract hummingbirds and butterflies. Yet both plants suffer from having names which define them as undesirable.

Even plants more worthy of the title “weed” often have redeeming qualities. Japanese knotweed, the bane of many landscapers, makes a passable rhubarb substitute when young, and its roots show real promise as a treatment for certain cancers, and possibly for Lyme disease as well. Redroot pigweed can be a nuisance weed in vegetable gardens and pastures, but its leaves and seeds are nutritious and tasty.

But there are a few names which are intensely hard to swallow. Gagroot, for instance, also called vomitwort or pukeweed, is a tough sell. Its botanical name is Lobelia inflata, and some know it as blue lobelia or Indian tobacco. This native wildflower is a close relative of the shockingly red cardinal flower, Lobelia cardinalis, which bursts into bloom along stream and pond banks in late summer.

Blue lobelia is not as showy as its crimson cousin, but it is an attractive plant in its own right. Though it can reach a height of more than two feet, it is typically between 8 and 12 inches tall. Its pale blue-violet blossoms give way to inflated seed capsules which remain on the stem. Flowers begin appearing in mid-summer, and continue to bloom until the first freeze. A self-seeding annual, sometimes acting as a biennial, it is easy to grow from seed.

At the time of European contact, Indian tobacco was in widespread medicinal use over the extent of its range, which is basically eastern North America except for northern Ontario and Quebec, and the far southern parts of the US. As its less-flattering nicknames suggest, this plant does induce vomiting. It was championed as the preferred cure for nearly all ailments by American herbalist Samuel Thompson (1769-1843), who managed to remain popular a long while before people finally got sick of his treatments. Over the centuries, Lobelia inflata has also been used to promote sweating, as an antispasmodic, as an aid in smoking cessation, and especially to relieve the symptoms of asthma.

This is the part of the program where I am required to say “It is essential to consult your health-care provider before using lobelia, and to only use it under the supervision of an experienced herbalist.” Except this time I mean it. This is not to say no one should use Lobelia inflata. It is a potent and effective medicine, but like many important drugs such as insulin and digitalis, it is toxic in moderate to large amounts. Misjudging the dosage could lead to convulsions, coma or death.

One of Indian tobacco’s key constituents, lobeline, apparently accounts for the herb’s ability to relax bronchial tubes, open airways, and stimulate breathing. It has been traditionally smoked in small amounts, although today it is also available as a tincture or in capsule form. Occasionally it is combined with other herbs and used as a chest or sinus rub.

Structurally, lobeline does not resemble nicotine, but it does affect the body in similar ways, which might account for its history in helping people kick the tobacco habit. Lobeline may in fact turn out to be a treatment for stimulant abuse. Articles in the medical journals Biochemical Pharmacology (Jan. 2002) and Neurochemical Research (Nov. 2006) indicate that lobeline alters the way stimulants act on the brain’s “reward center.” In the words of the authors, lobeline disrupts “...the fundamental mechanisms of dopamine storage and release.”

In this season of extra-dry indoor air, frigid outdoor air, wood smoke, and irritating coughs, Indian tobacco could be especially helpful. Even though it does come from a common native herb, a strong medicine demands strong respect, so check with a medical professional before investigating pukeweed treatment. That is, if you can get past the name.

Paul Hetzler is a forester and a horticulture and natural resources educator with Cornell Cooperative Extension of St. Lawrence County.

Pining for a better memory

By PAUL HETZLER

During the Christmas holiday season, new memories will likely be made, and recollections of past seasons may be recounted as well. But the holiday season itself can aid in remembering events of long ago.

Speaking as a guy who can hide his own Easter eggs and still not find them all, I marvel how Father Christmas, who is a few years older than I am, manages to keep track of so many kids and presents. Lucky for us that the most enduring memories are those with an associated smell. If it was not for fragrant evergreen trees, wreaths and garlands, Santa might have long ago fumbled in carrying out his holiday duties.

Of all the memorable aromas of the holiday season, nothing evokes its spirit quite like the smell of a fresh-cut pine, spruce or fir tree. Although the majority of American households which observe Christmas have switched to artificial trees, the National Christmas Tree Association reports that 27.4 million real trees were sold in the U.S. last year, up from 22.6 million in 2015.

Every type of conifer has its own blend of sweet-smelling terpenols and esters that account for their “piney woods” perfume. Some people prefer the fragrance of a particular tree, possibly one they had as a child. A natural Christmas tree is, among other things, a giant holiday potpourri. No chemistry lab can make a plastic tree smell like fresh pine, fir or spruce.

The origins of the Christmas tree are unclear, but evergreen trees, wreaths, and boughs were used by a number of ancient peoples, including the Egyptians, to symbolize eternal life. In sixteenth-century Germany, Martin Luther apparently helped kindle (so to speak) the custom of the indoor home Christmas tree by bringing an evergreen into his house and decorating it with candles. For centuries after that, Christmas trees were always brought into homes on December 24th and were not removed until after the Christian feast of Epiphany on January 6th.

In terms of crowd-pleasers, the firs—Douglas, balsam, and Fraser—are very popular, aromatic evergreens. Grand and concolor fir smell great too. When kept in water, firs all have excellent needle retention.

Pines also keep their needles well. While our native white pine is more fragrant than Scots (not Scotch; that’s for Santa) pine, the latter far outsells the former, possibly because the sturdy Scots can bear quite a load of decorations without its branches drooping.

Not only do spruces have stout branches, they tend to have a strongly pyramidal shape. Spruces may not be quite as fragrant as firs or pines, though, but they’re great options for those who like short-needle trees.

The annual pilgrimage to choose a real tree together is for many families, mine included, a cherished holiday tradition, a time to bond. You know, the customary thermos of hot chocolate; the ritual of the kids losing at least one mitten; the time-honored squabble—I mean discussion—regarding which tree is best—good smells and good memories.

Not only are Christmas trees a renewable resource, they boost the local economy. Even if you don’t have the time to cut your own from a Christmas tree grower, do yourself a favor this year and purchase a natural tree from a local vendor, who can help you select the best kind for your preferences and also let you know how fresh they are. Some trees at large retail outlets were cut weeks, if not months, before they show up at stores. The Christmas Tree Association of New York (www.christmastreesny.org/ ) can help you find a tree farm close to you.

For the best fragrance and needle retention, cut a one- to two-inch “cookie” from the base before placing your tree in the stand, and fill the reservoir every two days. Research indicates products claiming to extend needle life don’t work, so save your money. Tree lights with LED bulbs don’t dry out the needles like the old style did, and are easier on your electric bill too.

Whatever your traditions, may your family, friends, and evergreens all be well-hydrated, sweet-scented and a source of long-lasting memories this holiday season.

Paul Hetzler is a forester and a horticulture and natural resources educator with Cornell Cooperative Extension of St. Lawrence County.

Magic mushrooms and red noses

By PAUL HETZLER

As a kid I was enthralled by TV nonfiction shows. Nova and Frontline had great stuff, but my favorites were Christmas documentaries like Frosty the Snowman. Over the years I’ve been disappointed that no further work seems to have been done on the many questions left hanging by the original researchers.

Take the whole glowing-nose thing. First documented back in 1939 by Robert L. May in his book Rudolph the Red-Nosed Reindeer, the story surrounding the phenomenon is well-known. Since no one has come up with a scientific explanation, I have decided to tackle the issue. Bioluminescence is a natural process wherein fungi, microbes, insects or marine animals emit light as a result of chemical reactions which they control, and there are a number of ways a reindeer may have naturally developed a lighted nose.

Luminous life-forms, not to be confused with luminary life-forms such as Gandhi and Nelson Mandela, generally fall into two camps: those that make their own light, and those that hijack it from others. Anglerfish are an example of the latter. To attract prey, they convince a pile of bioluminescent bacteria to live on the end of the fishing-pole-thing (ecsa) that sprouts from anglerfish heads, and to light up on command. No one seems clear on how this works, but to be fair it’s tough to study anything that deep.

Most deep-sea living light bulbs are only available in blue-green. That color has a shorter, more industrious wavelength as compared to red, which is too lazy to make it all the way from the sunny surface. Because the ocean bottom is a red-free zone, most deep-sea animals have lost the ability to see red. But a few predators, e.g. the northern stoplight loosejaw, have figured out how to both detect and produce red light. When it flips the switch, it can see any prey within the red-light district created by its bio-light, but the prey notice nothing; it’s like having night-vision glasses.

I could imagine a scenario where Santa lands on a beach to adjust the freight or defrost his iPad, and Rudolph gets infected by the bacteria from one of these red-light fish that had washed ashore. It’s entirely plausible.

Up on dry land, the best-known bioluminescent organism may be fireflies. Either them or Tinkerbell, who still sparks fights among taxonomists as to what category she belongs (I’m guessing a mutant damselfly). Fireflies are honest about making their own light without enslaving microbes, but dishonest in the way they use it to signal mates. We can’t tell if they lie about their age, but some fireflies have learned the signal codes used by rival species. They pretend to advertise for mates of that species, and then eat anyone who shows up for a date, regardless of whether it brings flowers.

I’m sure Santa has to wipe a few smeared fireflies off his windshield on some part of his trip, but I doubt Rudolph’s glow came from a firefly encounter.

Certain fungi also shine under their own power. Depending which authority you use, there are either 71, 76, or 80 bioluminescent fungi species on the planet. We have 17 in North America, though our magic mushrooms are dimmer than those in Australia. Not only do the mushrooms, or fruiting structures, light up, the fungal mycelium or main body inside the wood it’s consuming also glow. I first noticed glow-in-the-dark fungi while camping. As I split some punky firewood at night (not exactly a bright idea), I was surprised to see a green glow inside each chunk of wood.

As yet there is no agreement on why fungi glow. It could be to attract insects to spread spores, or to repel fungi-eating insects by attracting predator insects. Or it is just a chemical byproduct of digesting lignin, which is to wood what steel reinforcing bars are to concrete, imparting strength and resiliency. Very few fungi can break down lignin, and the ones which do are the same ones that light up.

Fireflies and fungi both make light by mixing two chemicals, luciferin and luciferase, which admittedly sounds a bit ominous. I don’t want to suggest Rudolph made a deal with luciferin and luciferase, but if he ate some high-wattage glowing mushrooms in Australia, something might have rubbed off on him.

I hate to think that Santa’s workshop ever involved gene transfer, but it would be remiss to gloss over transgenic animals. As far as I know, genetically modified critters were developed in the early 1980s, with glowing animals first appearing around 2002. Certainly it would be possible today to insert jellyfish genes into a reindeer nose, but probably not back in 1939. Plus, I think Santa would understand the importance of steering clear of anything that could be misunderstood by kids. No doubt Mrs. Claus would have had a word with him about it.

I contend Rudolph was either exposed to deep-sea red-emitting bacteria, or he got his nose into some bright mushrooms Down Under, and I expect follow-on research to come to light shortly. The next order of business, obviously, is to explain flying reindeer, which may also involve mushrooms. If I didn’t have to further study a documentary entitled A Christmas Carol, I would get right on it.

Paul Hetzler is a forester and a horticulture and natural resources educator with Cornell Cooperative Extension of St. Lawrence County.

Weather or not

By PAUL HETZLER

Weather modeling has become quite a big deal in recent years, with meteorologists falling all over themselves to report what the latest models say. It sounds like a fun job, and I am trying to find out how to apply for a position. No doubt I could model categories like “large stationary front” or “high pressure system” pretty well. If it involves appearing in a swimsuit, though, forget it.

I love it when a radio announcer chirps “clear and sunny” during a storm because they did not look out before reading the outlook. Funny how reality can boost the accuracy of weather reports. So when you can’t even bank on today’s forecast, it’s normal to view long-range projections with a skeptical eye. However, seasonal models are very good at foreseeing key trends such as droughts or severe hurricane seasons. You can depend on models if they call for above-average precipitation this winter. But if you want to know if it will snow on a given day, you’ll have to listen to the radio. Or flip a coin.

On its website, the US National Oceanic and Atmospheric Administration (NOAA) explains that seasonal modeling “...provides information about the expected state of regional climate, based on long-term trends, shorter-term persistence in the climate system, and the current and anticipated state of tropical sea surface temperatures (i.e., El Niño). Seasonal forecasts for upcoming months use sophisticated computer models, statistical models, and/or expert judgments.” El Niño and La Niña, respectively, are the warm and cool phases of the 2- to 7-year “Southern Oscillation,” a tropical ocean current system that has a huge effect on our weather. That’s a drawback to living on a planet—heat doesn’t stay on its own part of the map.

Meteorology dates back to Aristotle; in fact he’s the guy who came up with the name. I suspect that in its early days, the science was hampered by a noticeable lack of meteors. Honestly, you have to wonder what Aristotle was expecting. Things picked up when meteorology began looking at other stuff that fell out of the sky, rain for example. I had always equated the science with forecasting, since the person on TV giving the weather was called a meteorologist. But the discipline includes studying the chemistry and physics of the atmosphere, and tracking changes and trends in its composition and behavior.

Austria opened the first-ever national weather bureau in 1851, followed by the UK in 1854, and the US in 1890. While virtually every country now has its own weather forecasting service, some of the top research facilities are in China, Japan, France, and the UK. Long-range modeling is an international effort, as getting accurate forecasts is important for all nations. NOAA is a free, user-friendly resource, and I encourage people to visit http://www.cpc.ncep.noaa.gov/products/predictions/long_range to see its outlook for the upcoming winter. In a nutshell, it’s above-normal precipitation, with temperatures at or slightly below normal on average, but characterized by frequent mood swings.

Some climate centers charge fees to release modeling charts and graphs. Highly accurate systems such as the European Seasonal to Inter-annual Prediction (EUROSIP) may run 20 or more models at once, each using different processes, and with origins in perhaps a dozen countries. EUROSIP reports are for professionals, with language like “The set of dynamical and statistical models predict weak La Niña conditions with an SST anomaly in the Nino3.4 region of -1.1 C...” I’ll stick with NOAA.

Model accuracy is checked by “hindcasting,” or predicting past weather. This sounds like another job I could handle, provided the past was not older than about a week. In hindcasting, climate inputs from a given time period are entered into each model, and researchers compare the modeled forecasts with known historical conditions. Models are constantly adjusted to further “train” them. In one exercise, ocean surface temperature readings were used to “forecast” El Niño and La Niña events from 1857 to 2003. Not only did the model correctly identify every event, it predicted each one up to two years out.

Results like that make me wonder why the three-day forecast is often not much better than a guess. Maybe I really should get into weather modeling. I hope you’re not required to wax.

Paul Hetzler is a forester and a horticulture and natural resources educator with Cornell Cooperative Extension of St. Lawrence County.